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ABSTRACT A-1

We give two results concerning the properties of state-space models with
exponential family observation distribution and conjugate state distribution.
The first result gives a simple and general interpretation of the parameters of
the predictive state distribution in terms of the observation forecast distribu-
tion. The second result shows how the first result can be used to check the
long-term model properties of recurrence and ergodicity for a class of non-
Gaussian observation distributions. In particular, these results apply to models
with Poisson, binomial and multinomial observation distributions.
KEYWORDS: Bayesian forecasting; Binomial time series; Multinomial time
series; Poisson time series; Recursive updating; Time series.

1. INTRODUCTION

The state-space approach provides a powerful formulation of many models for studying

time series in the time domain. This approach encompasses Kalman Filter and ARMA

models (Harrison and Stevens, 1976; Harvey, 1981, ch. 4) and has provided the standard

approaches for treating missing values and irregularly spaced data (Jones, 1980 and 1981) and

for computing the Gaussian likelihood for many models (Harvey and Philips, 1979). More
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recently, a Bayesian view of state-space models has opened the way for modeling time series

of non-Gaussian data. For example, useful models have been suggested for time series of

binomial or Poisson observations (West, Harrison and Migon, 1985), and we have been

exploring the case of compositional data (Grunwald, Raftery and Guttorp, 1989). These

models provide a simple and computationally efficient framework for filtering and forecasting

such series. In some cases they also allow the incorporation of covariates, trends, seasonality

and interventions in a natural way.

In this paper we present results concerning the properties of some non-Gaussian state-

space models. In particular, we study the recurrence and ergodicity of a class of models, and

illustrate the results with the Poisson, binomial and multinonial examples. We also give a

general interpretation of the parameters of the state distribution in terms of the observation

forecast distribution.

2. NON-GAUSSIAN STATE-SPACE MODELING

A general state space model consists of three parts; an observation distribution, a state

distribution and a method for making state forecasts. We assume an exponential family distri-

bution for the observation and a state distribution that is conjugate to the observation distribu-

tion, but leave the state prediction rule unspecified for the present.

Let Y, =(Y ..... yd)T be a vector in Rd, and suppose that Y, follows an exponential

family observation distribution with density

p (y, I 0t) = exp { ytTO -M (0t)+ S (yd) }I(Y,). (2.1)

Let T be the interior of the convex hull of the support Y of the observation density, and

assume that ' is a non-empty open set in Rd. Let O e E)O (c Rd :M(O)<e), the

natural parameter space, where M(O)=logfexp (yT ) p(y I)dy. Assume that 0 is a non-

empty open set in Rd. These conditions hold for the cases of most practical interest, where

the obsmvations have Poisson, binomial and multinomial distributions.
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The conjugate density for the above observation distribution is

p (0, lo tjc, it ) - exp [ a, 1, { lt Itot -M(O) 1 (2.2)

The subscripts and superscripts t lt2 for the parameters of this distribution describe the

parameter at time tI given data and covariate information at all times up to and including t2.

It follows from Theorem I of Diaconis and Ylvisaker (1979) that if Yt, t>0 and

Kt It I rT, then the density (2.2) can be normalized to a probability density and, for = R,

these are the only parameter values for which the state density is finite. When E) * Rd there

may be other parameter values for which the density can be normalized. Usually in practice

the observation density has some standard form and then the natural conjugate distribution is

well known; for example, the beta is conjugate to the binomial, the gamma to the Poisson,

and the normal to the normal when the variance is known.

To completely specify the state space model it remains only to describe a state prediction

rule, or a method for obtaining the predictive state density p (Ot+llot+1 ,t ct+I t ). These den-

sities will act as the priors in the sequential applications of Bayes' Theorem to follow, and are

specified through relations involving their parameters:

-t It.-'> :+l t, (2.3)

|ct it'-+ Kt+ i. (2.4)

Such a rule may involve other parameters, covariate information or past data, and expresses

what we "expect" to happen in the interval (t, t+l), during whicit no new data are observed.

This is where the temporal structure enters the model.

The model specification is now complete. Upon observing the new datum y,+,, applica-

tion of Bayes' Theorem yields the state posterior density, p(O1+i lot+, It+iK+It+), to be of

the same form as (2.2) (the conjugacy property) with parameters

(7t+l It+1 = ( t+l It + 1,

|qt+l It+1 = Ct+l It + g+i(Y+i -- 1Ct+1 it ) = (1--gt+)|Xt+l It + gt+lyt+l. (2.5)
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In (2.5), gt, = 1/atl 11+1 is analogous to the gain in the usual Kalman Filter.

The successive applications of Bayes' Theorem give recursions for the parameters of the

posterior state distribution, and this procedure is known as filtering. The filtered distribution

can often be thought of as the distribution of a signal that is to be observed with (possibly

non-additive) noise. When both observation and state distributions are normal and the cbser-

vation variance is assumed to be known, this procedure yields the usual Kalman filter. The

predictive distribution of the next observation, or forecast density, is obtained by integrating

out the state from the observation density (2.1), yielding

p= f p (Yt+d0t+l) P(Ot+llY)dOt+. (2.6)

If the state prediction rule given by equations (2.3) and (2.4) is deterministic, then condi-

tioning Ot+l on y' is equivalent to conditioning on (aYt+lit, Itc+ I,). In some of the more

common cases, this integration can be done easily and a simple closed form for the forecast

distribution is then available (negative binomial for Poisson observations, beta-binomial for

binomial observations and normal for Gaussian observations) while in other cases the integra-

tion may not be possible. In the following section we give a simple and general result for the

mean of the forecast distribution in terms of the parameters of the state distribution. This

result is used in proving the succeeding results concerning recurrence and ergodicity, and is

also of interest in its own right as a point forecast of the observation.

The results we give concerning recurrence and ergodicity are based on Tweedie (1975).

For a Markov chain (X t ) on a normed space, he considers the quantity

y,-E[IX+jl- iXt1 I Xt=x] =E[IXt+Il I Xt=x]-Ixi. (2.7)

Intuitively, for "stable" processes, y, would be negative for x far from the center of the space,

since then the future observation would be expected to be closer to the center than the present

observation. In f'tt, he shows that, if fP(x, .)) is strongly continuous, the process (Xt J is
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Recurrent if and only if there is some ac> 0

with y. < 0 for all x such that I x I > a. (2.8)

Ergodic if and only if there is some a> 0 such that y, < -c

for all x satisfying I x I > ox for some positive constant c,

and yx is bounded above for all x satisfying I x I < cx. (2.9)

In particular, when IxI = Ix I + + Ixd I is the L 1 norm and when the components of X,

are all either always positive or always negative, then y' is easily computed and direct evalua-

tion of the long term properties of the model is possible. These ideas are the topic for the

next section.

3. THE FORECAST MEAN, RECURRENCE AND ERGODICITY

In this section, we state and prove the two results of this paper. The first result gives a

simple and general expression for the forecast mean. The second one uses this to compute the

quantity y, of (2.7) in some cases, and thus allows a direct check of recurrence and ergodi-

city.

Theorem 1: Let 8 g Rd be open and suppose that (2.2), (2.3) and (2.4) hold with a,,,l >0

and K, 1 eIt e T. Then

E [yt+1lyt] =ict+ 1 It, (3.1)

where y .(yl .. Yt).

Proof: We czmpute the forecast mean directly and then apply Theorem 2 of Diaconis and

Ylvisaker (1979).

E[yt+I y] = pY+iP +l Iyt)dy+l

= Yt+ { (p(Y+,I Ot+lY) p(Of+I y)dOt+l1dY,+. (3.2)
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By Fubini's theorem, whose application here is justified by the regularity of the exponential

families and the finiteness of the integral in (3.2) as shown below, this is equal to

S{f Iy1+lp (yt+iI0t+iY)dyt+lI}p(8t+lIy')dOt+l
= [y1+1 I0 +,y' ] P (et+i I Yt)d et+1

= VM(O,+) p (O+,Iy')dOr+1

=E [VM (0t+0) I ], (3.3)

where VM (0) = ]T ... J . By Diaconis and Ylvisaker (1979, Theorem 2),

the right-hand side of (3.3) is equal to x,+1 t The equality

E[yt+1fet+,y' ] = VM(Ot+)

is standard exponential family theory (e.g. Bickel and Doksum, 1977, p.71) and is also given

in equation (2.2i) of Diaconis and Ylvisaker (1979). 0

Remark: One way to use the result (3.1) is to consider the difference R, aYt+l - Kt+l 1 as a

residual at time t. This provides a starting point for model checking.

The second result of our paper concerns the long-term properties of some exponential

family state space models. This result is a direct application of Theorem 1 and the results of

Tweedie (1975), as reported in (2.7), (2.8) and (2.9) above, to the process (X, )-{c 1 } of

the parameters of the state density.

Theorem 2: Suppose that 0)Rd is open and that 'P R+ or P Rd where

Rg={xe Rd: ±xi>aO for i=l,.... d. Also, assume that (2.2), (2.3) and (2.4) hold where

yt+l It >0 and ic,+1 1, E T is a deterministic, time-invariant function of i1c I,. Then

an = s U ( act+ n (9(k)-k (i(3.4)

and the long-term model properties are given by (2.8) and (2.9). In (3.4), s = I if T c R+ and
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s =-1 if T r R, and UT is a d-vector of ones.

Proof: Using the L 1 norm, direct calculation of (2.7) for the Markov process (c ,} gives

yk = E[ IKt+!+l I - 1ltctt I I Kx11 =k]

= s UT E [{(1-gt+l)1Kt+llt +gt+,Yt+l} - ict t I ict : =k]

= S U T {(1-gt+l)it+l it(k) + gt+lE[Yt+l I ict tt =k] - k }.(3.5)

By the definition of the state-space model, p(Ot+lyt ) = p(Ot+jot It, 1 It). Thus (2.6) yields

P(Yt+llt) =P(Y,+jkatt t,"tcj). It follows by Theorem 1 that the conditional expectation in

the second term on the right-hand side of (3.5) is equal to Kt+111 (k). We therefore obtain

Ak = S UT ( Kt+lIt(k)-k } . []

Theorem 2 holds when the components of yt are all positive or all negative and when

the state prediction rule is deterministic and time-invariant. While these conditions may seem

somewhat restrictive, there are many models whose long-term properties can be studied by

these methods, as we illustrate with the examples below.

4. EXAMPLES

4.1 The steady model

The most common state prediction rule is ict+ l I ti"t it and 01t+, 11 = 80t 1, with 0<8<1,

which Smith (1979) uses to define a "steady" model for non-Gaussian state space models.

For this steady model, when the conditions of Theorem 2 apply, yk=0 so that any steady

exponential family model of this type is recurrent, by (2.8). Such a model is ergodic, how-

ever, if and only if the space P is bounded above in all dimensions, by (2.9). This last can

be seen by taking, when ' is bounded, cx= max{ IxI :x e ') so that (2.9) is satisfied trivially.

In fact, these results show that any exponential family state space model satisfying the condi-

tions of the theorems and having T bounded in all dimensions is both ergodic and recurrent.
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These results for exponential family state space models satisfying Theorem 2 are in con-

trast to the normal steady model defined when (2.1) and (2.2) are Gaussian. This normal

steady model is neither ergodic nor recurrent, as can be seen either by noting that it is

equivalent to a normal random walk (which has neither stability property) observed with

Gaussian error, or by noting that there is an equivalent ARIMA(0,1,1) model, which is neither

ergodic nor recurrent.

4.2 A Poisson time series model

The conjugate state density for the Poisson with mean X, specifies that X, has a gamma

distribution with scale parameter a, It and shape parameter 0 It It r. The forecast distribution

can be computed directly from (2.6) to be negative binomial with mean ic,, 1 1, (as in Theorem

0 t+1 It + I

1) and variance -0 t+, t . There does not appear to be a general result such as

Theorem 1 for forecast variances.

The conditions of Theorem 2 apply (with s = 1) for appropriate state prediction rules.

The steady model is recurrent but not ergodic by Section 4.1, since T is unbounded. The

theorem would also apply to other models specifying particular types of growth or decay. For

example, for Poisson observations, K1,+1 It = Xic, I,, along with the discounting at,, It = bat it

as before, specifies exponential decay (0< X < 1), exponential growth (1 < X) or the steady

model (?L= 1). Then Yk = (X- 1)k, so that the process is not recurrent and hence not ergodic

if X > 1. Also, the process is ergodic and hence recurrent if X.< 1. For X # 1, these models do

not appear to have been studied in the literature, and Theorem I motivates them by giving an

interpretation of the state prediction rules that define them. They may be useful for modeling

the evolution of population size over time. They have the advantage of handling zero obser-

vations in a natural way, and they are flexible enough to be used together with other

approaches such as threshold modeling. Care is needed in defining such models, since ic+1 11

must remain in TF.
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4.3 Models for binomial and multinomial time series

We now consider the case where the observation distribution is multinomial, or binomial

as a special case, with N independent of time. Then all of the conditions of the Theorems are

satisfied (with s = 1) provided that the multinomial is expressed in a non-degenerate form in

terms of the first d components for a (d+l)-component multinomial. The natural conjugate to

the multinomial distribution is the Dirichlet distribution with parameters

d
att Cl, " Id ,(n - XKi 1 ) and again the forecast distribution is a familiar one,

i=1

the Dirichlet-multinomial (Mosimann, 1962). The forecast mean is given by Theorem 1,

while the forecast variance of the jth component of the multinomial observation is

K+1 +,t(n -]C/l I t). As mentioned in Section 4.1, any multinomial state space modelat+1 It

is both ergodic and recurrent.
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